Modelling of solid solution strengthening in multicomponent alloys
With increasing industrial interest in high alloyed multicomponent and High Entropy Alloy (HEA) systems the integration of solid solution strengthening in the ICME framework for efficient Materials Design becomes an important translator tool. A general model is proposed that performs as the framewor...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2017-07, Vol.700, p.301-311 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With increasing industrial interest in high alloyed multicomponent and High Entropy Alloy (HEA) systems the integration of solid solution strengthening in the ICME framework for efficient Materials Design becomes an important translator tool. A general model is proposed that performs as the framework for an extensive assessment of solid solution strengthening coefficients. The model assumes the concentration dependence of x2/3 as proposed by Labusch but gives a non-linear composition dependence to the strengthening parameter yielding a better description for concentrated alloys. To calibrate the model, 895 alloy systems, including a wide range of elements, have been used giving a good agreement between calculated and experimental values. Additionally, a promising method is proposed to represent the temperature related softening in the investigated systems. |
---|---|
ISSN: | 0921-5093 1873-4936 1873-4936 |
DOI: | 10.1016/j.msea.2017.06.001 |