Formulating customized specifications for resource allocation problem of distributed embedded systems
There are plentiful attempts for increasing the efficiency, generality and optimality of the Design Space Exploration (DSE) algorithms for resource allocation problems of distributed embedded systems. Most contemporary approaches formulate DSE as an optimization or SAT problem, based on a set of pre...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | There are plentiful attempts for increasing the efficiency, generality and optimality of the Design Space Exploration (DSE) algorithms for resource allocation problems of distributed embedded systems. Most contemporary approaches formulate DSE as an optimization or SAT problem, based on a set of predefined constraints. In this way, the end users lose the flexibility to guide and customize the exploration based on specifics of their actual problem. Besides, during the design of the DSE algorithms, manual formulation is time consuming and error-prone. To solve these problems, 1) a formal representation is defined for capturing customized architectural constraints based on a combination of propositional logic and Pseudo-Boolean (PB) formulas; 2) A process is designed to automatically translate these architectural constrains into corresponding Integer Linear Programming (ILP) constraints, commonly used for DSE. The translation process is also optimized to create ILP formulation with less introduced variables so as to reduce computation time. The results show that the generated constraints correctly reflect the corresponding specification with decent efficiency. |
---|---|
ISSN: | 1558-2434 |
DOI: | 10.1145/2966986.2967042 |