Liquid-Crystalline Dye-Sensitized Solar Cells: Design of Two-Dimensional Molecular Assemblies for Efficient Ion Transport and Thermal Stability

Nanostructured liquid-crystalline (LC) electrolytes have been developed for efficient and stable quasi-solid-state dye-sensitized solar cells (DSSCs). Two types of ionic LC assemblies for electrolytes have been designed: (i) noncovalent assemblies of two-component mixtures consisting of I2-doped imi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2016-09, Vol.28 (18), p.6493-6500
Hauptverfasser: Högberg, Daniel, Soberats, Bartolome, Yatagai, Ryo, Uchida, Satoshi, Yoshio, Masafumi, Kloo, Lars, Segawa, Hiroshi, Kato, Takashi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nanostructured liquid-crystalline (LC) electrolytes have been developed for efficient and stable quasi-solid-state dye-sensitized solar cells (DSSCs). Two types of ionic LC assemblies for electrolytes have been designed: (i) noncovalent assemblies of two-component mixtures consisting of I2-doped imidazolium ionic liquids and carbonate-terminated mesogenic compounds (noncovalent type) and (ii) single-component mesogenic compounds covalently bonding an imidazolium moiety doped with I2 (covalent type). These mesogenic compounds are designed with flexible oligooxyethylene spacers connecting the mesogenic and the polar moieties. The oligooxyethylene-based material design inhibits crystallization and leads to enhanced ion transport as compared to alkyl-linked analogues due to the higher flexibility of the oligooxyethylene spacer. The noncovalent type mixtures exhibit a more than 10 times higher I3 – diffusion coefficient compared to the covalent type assemblies. DSSCs containing the noncovalent type liquid crystals show power conversion efficiencies (PCEs) of up to 5.8 ± 0.2% at 30 °C and 0.9 ± 0.1% at 120 °C. In contrast, solar cells containing the covalent type electrolytes show significant increase in PCE up to 2.4 ± 0.1% at 120 °C and show superior performance to the noncovalent type-based devices at temperature above 90 °C. Furthermore, the LC-DSSCs exhibit excellent long-term stability over 1000 h. These novel electrolyte designs open unexplored paths for the development of DSSCs capable of efficient conversion of light to electricity in a wide range of temperatures.
ISSN:0897-4756
1520-5002
1520-5002
DOI:10.1021/acs.chemmater.6b01590