How Good Can a Face Identifier Be Without Learning

Constructing discriminative features is an essential issue in developing face recognition algorithms. There are two schools in how features are constructed: hand-crafted features and learned features from data. A clear trend in the face recognition community is to use learned features to replace han...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lecture notes in computer science 2016
Hauptverfasser: Zhong, Yang, Hedman, Anders, Li, Haibo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Constructing discriminative features is an essential issue in developing face recognition algorithms. There are two schools in how features are constructed: hand-crafted features and learned features from data. A clear trend in the face recognition community is to use learned features to replace hand-crafted ones for face recognition, due to the superb performance achieved by learned features through Deep Learning networks. Given the negative aspects of database-dependent solutions, we consider an alternative and demonstrate that, for good generalization performance, developing face recognition algorithms by using handcrafted features is surprisingly promising when the training dataset is small or medium sized. We show how to build such a face identifier with our Block Matching method which leverages the power of the Gabor phase in face images. Although no learning process is involved, empirical results show that the performance of this “designed” identifier is comparable (superior) to state-of-the-art identifiers and even close to Deep Learning approaches.
ISSN:1611-3349
0302-9743