Estimates for the lowest eigenvalue of magnetic Laplacians
We prove various estimates for the first eigenvalue of the magnetic Dirichlet Laplacian on a bounded, open, simply connected domain in two dimensions. When the magnetic field is constant, we give lower and upper bounds in terms of geometric quantities of the domain. We furthermore prove a lower boun...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 2016-07, Vol.439 (1), p.330-346 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove various estimates for the first eigenvalue of the magnetic Dirichlet Laplacian on a bounded, open, simply connected domain in two dimensions. When the magnetic field is constant, we give lower and upper bounds in terms of geometric quantities of the domain. We furthermore prove a lower bound for the first magnetic Neumann eigenvalue in the case of constant magnetic field. |
---|---|
ISSN: | 0022-247X 1096-0813 1096-0813 |
DOI: | 10.1016/j.jmaa.2016.02.073 |