Boundary properties of Green functions in the plane

We study the boundary properties of the Green function of bounded simply connected domains in the plane. Essentially, this amounts to studying the conformal mapping taking the unit disk onto the domain in question. Our technique is inspired by a 1995 article of Jones and Makarov [11]. The main tools...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Duke mathematical journal 2008-10, Vol.145 (1), p.1-24
Hauptverfasser: Baranov, Anton, Hedenmalm, Håkan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the boundary properties of the Green function of bounded simply connected domains in the plane. Essentially, this amounts to studying the conformal mapping taking the unit disk onto the domain in question. Our technique is inspired by a 1995 article of Jones and Makarov [11]. The main tools are an integral identity as well as a uniform Sobolev embedding theorem. The latter is in a sense dual to the exponential integrability of Marcinkiewicz-Zygmund integrals. We also develop a Grunsky identity, which contains the information of the classical Grunsky inequality. This Grunsky identity is the case where p = 2 of a more general Grunsky identity for L p -spaces
ISSN:0012-7094
1547-7398
1547-7398
DOI:10.1215/00127094-2008-044