Extremal Behavior of Stochastic Integrals Driven by Regularly Varying Lévy Processes

We study the extremal behavior of a stochastic integral driven by a multivariate Lévy process that is regularly varying with index α > 0. For predictable integrands with a finite (α + δ)-moment, for some δ > 0, we show that the extremal behavior of the stochastic integral is due to one big jum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of probability 2007-01, Vol.35 (1), p.309-339
Hauptverfasser: Hult, Henrik, Lindskog, Filip
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the extremal behavior of a stochastic integral driven by a multivariate Lévy process that is regularly varying with index α > 0. For predictable integrands with a finite (α + δ)-moment, for some δ > 0, we show that the extremal behavior of the stochastic integral is due to one big jump of the driving Lévy process and we determine its limit measure associated with regular variation on the space of càdlàg functions.
ISSN:0091-1798
2168-894X
2168-894X
DOI:10.1214/009117906000000548