Enhancing the Economic Competitiveness of Concentrating Solar Power Plants Through an Innovative Integrated Solar-Combined Cycle With Thermal Energy Storage
The present work deals with the thermo-economic analysis of an innovative combined power cycle consisting of a molten-salt solar tower power plant with storage supported by additional heat provided from the exhaust of a topping gas-turbine unit. A detailed dynamic model has been elaborated using an...
Gespeichert in:
Veröffentlicht in: | Journal of engineering for gas turbines and power 2015-04, Vol.137 (4) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The present work deals with the thermo-economic analysis of an innovative combined power cycle consisting of a molten-salt solar tower power plant with storage supported by additional heat provided from the exhaust of a topping gas-turbine unit. A detailed dynamic model has been elaborated using an in house simulation tool that simultaneously encompasses meteorological, demand and price data. A wide range of possible designs are evaluated in order to show the trade-offs between the objectives of achieving sustainable and economically competitive designs. Results show that optimal designs of the novel concept are a promising cost-effective hybrid option that can successfully fulfill both the roles of a gas peaker plant and a baseload solar power plant in a more effective manner. Moreover, designs are also compared against conventional combined cycle gas turbine (CCGT) power plants and it is shown that, under specific peaking operating strategies (P-OSs), the innovative concept cannot only perform better from an environmental standpoint but also economically. |
---|---|
ISSN: | 0742-4795 1528-8919 1528-8919 |
DOI: | 10.1115/1.4028655 |