Integrating viewpoints in the development of mechatronic products
The development of mechatronic products involves multiple stakeholders which have different viewpoints and therefore use different concepts, models and tools to deal with their concerns of interest. This paper argues that an increased emphasis needs to be placed on the relations between viewpoints t...
Gespeichert in:
Veröffentlicht in: | Mechatronics (Oxford) 2014-10, Vol.24 (7), p.745-762 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The development of mechatronic products involves multiple stakeholders which have different viewpoints and therefore use different concepts, models and tools to deal with their concerns of interest. This paper argues that an increased emphasis needs to be placed on the relations between viewpoints to be able to deal with the evolving scope and requirements on mechatronic products. We study relations between viewpoints at the levels of people, models and tools, and present solutions that are used to formally and explicitly capture such relations. Viewpoint contracts are used to define the vocabulary, assumptions and constraints required for ensuring smooth communication between stakeholders (people level). Dependency models capture relations between product properties belonging to different viewpoints, and how such dependencies relate to predictions and decisions (model level). Tool integration models describe the relations between tools in terms of traceability, data exchange, invocation and notifications (tool level). A major contribution of this paper is a unification approach, elaborating how these solutions can be used synergetically to integrate viewpoints. An industrial robot case study is utilized to illustrate the challenges and solutions with respect to relations between viewpoints, including the unification approach. |
---|---|
ISSN: | 0957-4158 1873-4006 1873-4006 |
DOI: | 10.1016/j.mechatronics.2013.11.013 |