Simplifying a life cycle assessment of a mobile phone

Purpose The possibilities for full life cycle assessment (LCA) of new Information and Communication Technology (ICT) products are often limited, so simplification approaches are needed. The aim of this paper is to investigate possible simplifications in LCA of a mobile phone and to use the results t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The international journal of life cycle assessment 2014-05, Vol.19 (5), p.979-993
Hauptverfasser: Moberg, Åsa, Borggren, Clara, Ambell, Christine, Finnveden, Göran, Guldbrandsson, Fredrik, Bondesson, Anna, Malmodin, Jens, Bergmark, Pernilla
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose The possibilities for full life cycle assessment (LCA) of new Information and Communication Technology (ICT) products are often limited, so simplification approaches are needed. The aim of this paper is to investigate possible simplifications in LCA of a mobile phone and to use the results to discuss the possibilities of LCA simplifications for ICT products in a broader sense. Another aim is to identify processes and data that are sensitive to different methodological choices and assumptions related to the environmental impacts of a mobile phone. Methods Different approaches to a reference LCA of a mobile phone was tested: (1) excluding environmental impact categories, (2) excluding life cycle stages/processes, (3) using secondary process data from generic databases, (4) using input-output data and (5) using a simple linear relationship between mass and embodied emissions. Results and discussion It was not possible to identify one or a few impact categories representative of all others. If several impact categories would be excluded, information would be lost. A precautionary approach of not excluding impact categories is therefore recommended since impacts from the different life cycle stages vary between impact categories. Regarding use of secondary data for an ICT product similar to that studied here, we recommend prioritising collection of primary (specific) data on energy use during production and use, key component data (primarily integrated circuits) and process-specific data regarding raw material acquisition of specific metals (e.g. gold) and air transport. If secondary data are used for important processes, the scaling is crucial. The use of input-output data can be a considerable simplification and is probably best used to avoid data gaps when more specific data are lacking. Conclusions Further studies are needed to provide for simplified LCAs for ICT products. In particular, the end-of-life treatment stage need to be further addressed, as it could not be investigated here for all simplifications due to data gaps.
ISSN:0948-3349
1614-7502
1614-7502
DOI:10.1007/s11367-014-0721-6