Pantograph Arcing in Electrified Railways-Mechanism and Influence of Various Parameters-Part II: With AC Traction Power Supply

Pantograph arcing with AC supply generates transients, cause asymmetries and distortion in supply voltage and current waveforms and can damage the pantograph and the overhead contact line. The asymmetry generates a net dc component and harmonics, which propagate within the traction power and signall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power delivery 2009-10, Vol.24 (4), p.1940-1950
Hauptverfasser: Midya, S., Bormann, D., Schutte, T., Thottappillil, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pantograph arcing with AC supply generates transients, cause asymmetries and distortion in supply voltage and current waveforms and can damage the pantograph and the overhead contact line. The asymmetry generates a net dc component and harmonics, which propagate within the traction power and signalling system and causes electromagnetic interference. Unlike DC-fed systems (Part I), the arcing in ac supply is complex because of the zero crossing of currents and voltages. In this paper, we discuss the mechanisms of sliding contact and arcing between pantograph-contact wire using the experimental setup described in Part I. Influences of various parameters and test conditions on arcing phenomenon and their signature patterns on the supply voltage and current waveforms are presented. It is shown how the arcing mechanism and corresponding asymmetry in the voltage and current waveforms are governed by line speed, current, supply voltage, inductive load, and pantograph material. The asymmetry in the current waveform is mainly due to the difference in the duration of successive zero-current regions and uneven distortion of the waveshapes. This, in turn, creates the asymmetry in the voltage waveform. The findings presented in this paper could be beneficial for coming up with appropriate mitigation techniques from the electromagnetic interference due to pantograph arcing in AC traction systems.
ISSN:0885-8977
1937-4208
1937-4208
DOI:10.1109/TPWRD.2009.2021036