Gradient-index infrared metamaterials based on metal-dielectric submicrometer pillar arrays
This paper presents the design and microfabrication of a two-dimensional metal-dielectric metamaterial structure based on an array of pillars with submicrometer diameters and heights. The diameters of pillars periodically vary along one axis in a sawtooth fashion and are constant along the other. Th...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents the design and microfabrication of a two-dimensional metal-dielectric metamaterial structure based on an array of pillars with submicrometer diameters and heights. The diameters of pillars periodically vary along one axis in a sawtooth fashion and are constant along the other. The electromagnetic field distribution within this graded metamaterial was considered utilizing an accurate analytical approach. The pillar arrays were fabricated in photoresist and subsequently covered with a sputter-deposited aluminum film. Structures were defined by direct laser writing in photoresist film. Controlled overexposure has been applied in order to make pillar features smaller than the nominal resolution of the equipment. The structures were characterized by optical and atomic force microscopy and by angle-dependent Fourier Transform infrared spectroscopy. The produced graded frequency-selective surfaces may be used e.g. in sensing. |
---|---|
DOI: | 10.1109/TELSKS.2013.6704885 |