Electricity Distribution Network Planning Considering Distributed Generation

One of EU’s actions against climate change is to meet 20% of our energy needs from renewable resources. Given that the renewable resources are becoming more economical to extract electricity from, this will result in that more and more distributed generation (DG) will be connected to power distribut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Huang, Yalin
Format: Dissertation
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One of EU’s actions against climate change is to meet 20% of our energy needs from renewable resources. Given that the renewable resources are becoming more economical to extract electricity from, this will result in that more and more distributed generation (DG) will be connected to power distribution. The increasing share of DG in the electricity networks implies both increased costs and benefits for distribution system operators (DSOs), customers and DG producers. How the costs and benefits will be allocated among the actors will depend on the established regulation. Distribution networks are traditionally not designed to accommodate generation. Hence, increasing DG penetration is causing profound changes for DSOs in planning, operation and maintenance of distribution networks. Due to the unbundling between DSOs and electricity production, DSOs can not determine either the location or the size of DG. This new power distribution environment brings new challenges for the DSOs and the electric power system regulator. The DSOs are obliged to enable connection of DG meanwhile fulfilling requirements on power quality and adequate reliability. Moreover, regulatory implications can make potential DG less attractive. Therefore regulation should be able to send out incentives for the DSOs to efficiently plan the network to accommodate the increasing levels of DG. To analyze the effects of regulatory polices on network investments, risk analysis methods for integrating the DG considering uncertainties are therefore needed. In this work, regulation impact on network planning methods and network tariff designs in unbundled electricity network is firstly analyzed in order to formulate a realistic long-term network planning model considering DG. Photovoltaic (PV) power and wind power plants are used to demonstrate DG. Secondly, this work develops a deterministic model for low-voltage (LV) networks mainly considering PV connections which is based on the worst-case scenario. Dimension the network using worst-case scenario is the convention in the long-term electricity distribution network planning for the reliability and security reason. This model is then further developed into a probabilistic model in order to consider the uncertainties from DG production and load. Therefore more realistic operation conditions are considered and probabilistic constrains on voltage variation can be applied. Thirdly, this work develops a distribution medium-voltage (MV) network planning