Visible Light Photocatalytic Activity in AACVD-Prepared N-modified TiO2 Thin Films

Nitrogen‐modified TiO2 thin films are obtained, for the first time, from aerosol‐assisted (AA)CVD‐prepared samples via a post‐treatment method involving immersion in liquid ammonia to achieve nitrogen‐modified TiO2 and visible‐light photo‐activity. The resulting modified and unmodified TiO2 films ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical vapor deposition 2014-03, Vol.20 (1-2-3), p.91-97
Hauptverfasser: Diesen, Veronica, Dunnill, Charles W., Bear, Joseph C., Firth, Steve, Jonsson, Mats, Parkin, Ivan P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nitrogen‐modified TiO2 thin films are obtained, for the first time, from aerosol‐assisted (AA)CVD‐prepared samples via a post‐treatment method involving immersion in liquid ammonia to achieve nitrogen‐modified TiO2 and visible‐light photo‐activity. The resulting modified and unmodified TiO2 films are characterized by X‐ray diffraction (XRD), Raman spectroscopy (RS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution (HR)TEM, energy dispersive X‐ray (EDX) spectroscopy, selected area electron diffraction (SAED), UV‐vis spectroscopy, and X‐ray photoelectron spectroscopy (XPS). This shows that the films are ∼200 nm thick and contain anisotropic crystals of anatase TiO2. XPS shows that the nitrogen is successfully added to the surface of the film interstitially at 0.7 at.‐%, but is only present to a film depth of 50 nm. The nitrogen doping causes a red shift in the absorption band and a band gap narrowing of ∼0.1 eV. The surface‐bound nitrogen results from the post‐treatment method of doping where the films are soaked in liquid ammonia before annealing. The photocatalytic efficiencies of the films under visible light (>385 nm) are evaluated by measuring formaldehyde formation from the probe molecule tris(hydroxymethyl)aminomethane (Tris). Hydrogen ion from Tris, obtained from, e.g., photocatalytically produced OH radicals, leads to formaldehyde formation which is then detected through a modified version of the Hantzsch reaction. The results show that the N‐modified film possess remarkable photocatalytic properties with an apparent photochemical quantum yield of ∼8%. Nitrogen‐modified TiO2 thin films are obtained from aerosol‐assisted (AA)CVD‐prepared samples via a post‐treatment method of immersion in liquid ammonia and calcining at 500°C. The films are characterized and shown to have visible light photocatalytic activity. Visible light photoactivity is shown by measuring formaldehyde formation from the probe molecule tris(hydroxymethyl)aminomethane.
ISSN:0948-1907
1521-3862
1521-3862
DOI:10.1002/cvde.201307086