Nb2O5 nanofiber memristor

Non-woven bead-free 100 μm long and 80–200 nm in diameter highly crystalline orthorhombic T-Nb2O5 nanofibers were sintered by sol-gel assisted electrospinning technique. Electrical and dielectric spectroscopy tests of individual fibers clamped onto Pt coated Si substrate were performed using a sprea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2013-07, Vol.103 (5), p.053111
Hauptverfasser: Grishin, A. M., Velichko, A. A., Jalalian, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Non-woven bead-free 100 μm long and 80–200 nm in diameter highly crystalline orthorhombic T-Nb2O5 nanofibers were sintered by sol-gel assisted electrospinning technique. Electrical and dielectric spectroscopy tests of individual fibers clamped onto Pt coated Si substrate were performed using a spreading resistance mode of atomic force microscope. Reproducible resistive switching with ON-OFF resistance ratio as high as 2 × 104 has a bipolar character, starts with a threshold voltage of 0.8–1.7 V, and follows by continuous growth of conductivity. Resistive memory effect is associated with a voltage-driven accumulation/depletion of oxygen vacancies at Nb2O5/Pt cathode interface. Poole-Frenkel emission from the electronic states trapped at reduced NbOx complexes determines a shape of Nb2O5/Pt diode I-V characteristics. Simple thermodynamic model explains a threshold character of switching, relates experimentally observed characteristics in low and high resistive states, and gives a reasonable estimate of the concentration of oxygen vacancies.
ISSN:0003-6951
1077-3118
1077-3118
DOI:10.1063/1.4817302