A limit equation associated to the solvability of the vacuum Einstein constraint equations by using the conformal method

Let ( M , g ) be a compact Riemannian manifold on which a trace-free and divergence-free σ ∈ W 1 , p and a positive function τ ∈ W 1 , p , p > n are fixed. In this paper, we study the vacuum Einstein constraint equations by using the well-known conformal method with data σ and τ . We show that if...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Duke mathematical journal 2012-11, Vol.161 (14), p.2669-2697
Hauptverfasser: Dahl, Mattias, Gicquaud, Romain, Humbert, Emmanuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let ( M , g ) be a compact Riemannian manifold on which a trace-free and divergence-free σ ∈ W 1 , p and a positive function τ ∈ W 1 , p , p > n are fixed. In this paper, we study the vacuum Einstein constraint equations by using the well-known conformal method with data σ and τ . We show that if no solution exists, then there is a nontrivial solution of another nonlinear limit equation on 1 -forms. This last equation can be shown to be without solutions in many situations. As a corollary, we get the existence of solutions of the vacuum Einstein constraint equation under explicit assumptions which, in particular, hold on a dense set of metrics g for the C 0 -topology.
ISSN:0012-7094
1547-7398
1547-7398
DOI:10.1215/00127094-1813182