A limit equation associated to the solvability of the vacuum Einstein constraint equations by using the conformal method
Let ( M , g ) be a compact Riemannian manifold on which a trace-free and divergence-free σ ∈ W 1 , p and a positive function τ ∈ W 1 , p , p > n are fixed. In this paper, we study the vacuum Einstein constraint equations by using the well-known conformal method with data σ and τ . We show that if...
Gespeichert in:
Veröffentlicht in: | Duke mathematical journal 2012-11, Vol.161 (14), p.2669-2697 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let ( M , g ) be a compact Riemannian manifold on which a trace-free and divergence-free σ ∈ W 1 , p and a positive function τ ∈ W 1 , p , p > n are fixed. In this paper, we study the vacuum Einstein constraint equations by using the well-known conformal method with data σ and τ . We show that if no solution exists, then there is a nontrivial solution of another nonlinear limit equation on 1 -forms. This last equation can be shown to be without solutions in many situations. As a corollary, we get the existence of solutions of the vacuum Einstein constraint equation under explicit assumptions which, in particular, hold on a dense set of metrics g for the C 0 -topology. |
---|---|
ISSN: | 0012-7094 1547-7398 1547-7398 |
DOI: | 10.1215/00127094-1813182 |