A Transmission Electron Microscopy Study of Plate Martensite Formation in High-carbon Low Alloy Steels

The martensitic microstructures in two high-carbon low alloy steels have been investigated by classical and automated crystallographic analysis under a transmission electron microscope. It is found that the martensitic substructure changes from consisting mostly of transformation twins for 1.20 mass...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science & technology 2013-04, Vol.29 (4), p.373-379
Hauptverfasser: Stormvinter, Albin, Hedström, Peter, Borgenstam, Annika
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The martensitic microstructures in two high-carbon low alloy steels have been investigated by classical and automated crystallographic analysis under a transmission electron microscope. It is found that the martensitic substructure changes from consisting mostly of transformation twins for 1.20 mass% carbon (C) steel to both transformation twins and planar defects on {101}M for 1.67 mass% C steel. In the 1.67 mass% C steel it is further found that small martensite units have a rather homogeneous substructure, while large martensite units are more inhomogeneous. In addition, the martensite units in both steels are frequently found to be of zigzag patterns and have distinct crystallographic relationships with neighboring martensite units, e.g. kink or wedge couplings. Based on the present findings the development of martensite in high-carbon low alloy steels is discussed and a schematic of the martensite formation is presented. Moreover, whether the schematic view can be applied to plate martensite formation in general, is discussed.
ISSN:1005-0302
1941-1162
DOI:10.1016/j.jmst.2013.01.016