Wiener sliding-mode control for artificial pancreas: A new nonlinear approach to glucose regulation

Abstract Type 1 diabetic patients need insulin therapy to keep their blood glucose close to normal. In this paper an attempt is made to show how nonlinear control-oriented model may be used to improve the performance of closed-loop control of blood glucose in diabetic patients. The nonlinear Wiener...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods and programs in biomedicine 2012-08, Vol.107 (2), p.327-340
Hauptverfasser: Abu-Rmileh, Amjad, Garcia-Gabin, Winston
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Type 1 diabetic patients need insulin therapy to keep their blood glucose close to normal. In this paper an attempt is made to show how nonlinear control-oriented model may be used to improve the performance of closed-loop control of blood glucose in diabetic patients. The nonlinear Wiener model is used as a novel modeling approach to be applied to the glucose control problem. The identified Wiener model is used in the design of a robust nonlinear sliding mode control strategy. Two configurations of the nonlinear controller are tested and compared to a controller designed with a linear model. The controllers are designed in a Smith predictor structure to reduce the effect of system time delay. To improve the meal compensation features, the controllers are provided with a simple feedforward controller to inject an insulin bolus at meal time. Different simulation scenarios have been used to evaluate the proposed controllers. The obtained results show that the new approach outperforms the linear control scheme, and regulates the glucose level within safe limits in the presence of measurement and modeling errors, meal uncertainty and patient variations.
ISSN:0169-2607
1872-7565
1872-7565
DOI:10.1016/j.cmpb.2012.03.001