Robust fixed stress splitting for Biot’s equations in heterogeneous media

We study the iterative solution of coupled flow and geomechanics in heterogeneous porous media, modeled by a three-field formulation of the linearized Biot’s equations. We propose and analyze a variant of the widely used Fixed Stress Splitting method applied to heterogeneous media. As spatial discre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics letters 2017-06, Vol.68, p.101-108
Hauptverfasser: Both, Jakub Wiktor, Borregales, Manuel, Nordbotten, Jan Martin, Kumar, Kundan, Radu, Florin Adrian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the iterative solution of coupled flow and geomechanics in heterogeneous porous media, modeled by a three-field formulation of the linearized Biot’s equations. We propose and analyze a variant of the widely used Fixed Stress Splitting method applied to heterogeneous media. As spatial discretization, we employ linear Galerkin finite elements for mechanics and mixed finite elements (lowest order Raviart–Thomas elements) for flow. Additionally, we use implicit Euler time discretization. The proposed scheme is shown to be globally convergent with optimal theoretical convergence rates. The convergence is rigorously shown in energy norms employing a new technique. Furthermore, numerical results demonstrate robust iteration counts with respect to the full range of Lamé parameters for homogeneous and heterogeneous media. Being in accordance with the theoretical results, the iteration count is hardly influenced by the degree of heterogeneities.
ISSN:0893-9659
1873-5452
1873-5452
DOI:10.1016/j.aml.2016.12.019