Robust fixed stress splitting for Biot’s equations in heterogeneous media
We study the iterative solution of coupled flow and geomechanics in heterogeneous porous media, modeled by a three-field formulation of the linearized Biot’s equations. We propose and analyze a variant of the widely used Fixed Stress Splitting method applied to heterogeneous media. As spatial discre...
Gespeichert in:
Veröffentlicht in: | Applied mathematics letters 2017-06, Vol.68, p.101-108 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the iterative solution of coupled flow and geomechanics in heterogeneous porous media, modeled by a three-field formulation of the linearized Biot’s equations. We propose and analyze a variant of the widely used Fixed Stress Splitting method applied to heterogeneous media. As spatial discretization, we employ linear Galerkin finite elements for mechanics and mixed finite elements (lowest order Raviart–Thomas elements) for flow. Additionally, we use implicit Euler time discretization. The proposed scheme is shown to be globally convergent with optimal theoretical convergence rates. The convergence is rigorously shown in energy norms employing a new technique. Furthermore, numerical results demonstrate robust iteration counts with respect to the full range of Lamé parameters for homogeneous and heterogeneous media. Being in accordance with the theoretical results, the iteration count is hardly influenced by the degree of heterogeneities. |
---|---|
ISSN: | 0893-9659 1873-5452 1873-5452 |
DOI: | 10.1016/j.aml.2016.12.019 |