Ending the Anomaly: Achieving Low Latency and Airtime Fairness in WiFi

With more devices connected, delays and jitter at the WiFi hop become more prevalent, and correct functioning during network congestion becomes more important. However, two important performance issues prevent modern WiFi from reaching its potential: increased latency under load caused by excessive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Høiland-Jørgensen, Toke, Kazior, Michał, Täht, Dave, Hurtig, Per, Brunström, Anna
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With more devices connected, delays and jitter at the WiFi hop become more prevalent, and correct functioning during network congestion becomes more important. However, two important performance issues prevent modern WiFi from reaching its potential: increased latency under load caused by excessive queueing (i.e. bufferbloat) and the 802.11 performance anomaly. To remedy these issues, we present a novel two-part solution. We design a new queueing scheme that eliminates bufferbloat in the wireless setting. Leveraging this queueing scheme, we then design an airtime fairness scheduler that operates at the access point and doesn't require any changes to clients. We evaluate our solution using both a theoretical model and experiments in a testbed environment, formulating a suitable analytical model in the process. We show that our solution achieves an order of magnitude reduction in latency under load, large improvements in multi-station throughput, and nearly perfect airtime fairness for both TCP and downstream UDP traffic. Further experiments with application traffic confirm that the solution provides significant performance gains for real-world traffic.We develop a production quality implementation of our solution in the Linux kernel, the platform powering most access points outside of the managed enterprise setting. The implementation has been accepted into the mainline kernel distribution, making it available for deployment on billions of devices running Linux today.