The Good, the Bad and the WiFi: Modern AQMs in a residential setting

Several new active queue management (AQM) and hybrid AQM/fairness queueing algorithms have been proposed recently. They seek to ensure low queueing delay and high network goodput without requiring parameter tuning of the algorithms themselves. However, extensive experimental evaluations of these alg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer networks (Amsterdam, Netherlands : 1999) Netherlands : 1999), 2015-10, Vol.89, p.90-106
Hauptverfasser: Høiland-Jørgensen, Toke, Hurtig, Per, Brunstrom, Anna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Several new active queue management (AQM) and hybrid AQM/fairness queueing algorithms have been proposed recently. They seek to ensure low queueing delay and high network goodput without requiring parameter tuning of the algorithms themselves. However, extensive experimental evaluations of these algorithms are still lacking. This paper evaluates a selection of bottleneck queue management schemes in a test-bed representative of residential Internet connections of both symmetrical and asymmetrical bandwidths as well as WiFi. Latency under load and the performance of VoIP and web traffic patterns are evaluated under steady state conditions. Furthermore, the impact of the algorithms on fairness between TCP flows with different RTTs, and also the transient behaviour of the algorithms at flow startup is examined. The results show that while the AQM algorithms can significantly improve steady state performance, they exacerbate TCP flow unfairness. In addition, the evaluated AQMs severely struggle to quickly control queueing latency at flow startup, which can lead to large latency spikes that hurt the perceived performance. The fairness queueing algorithms almost completely alleviate the algorithm performance problems, providing the best balance of low latency and high throughput in the tested scenarios. However, on WiFi the performance of all the tested algorithms is hampered by large amounts of queueing in lower layers of the network stack inducing significant latency outside of the algorithms’ control.
ISSN:1389-1286
1872-7069
1872-7069
DOI:10.1016/j.comnet.2015.07.014