Nickel: A very fast diffuser in silicon
Nickel is increasingly used in both IC and photovoltaic device fabrication, yet it has the potential to create highly recombination-active precipitates in silicon. For nearly three decades, the accepted nickel diffusivity in silicon has been DNi(T)=2.3×10−3exp(−0.47 eV/kBT) cm2/s, a surprisingly low...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2013-05, Vol.113 (20) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nickel is increasingly used in both IC and photovoltaic device fabrication, yet it has the potential to create highly recombination-active precipitates in silicon. For nearly three decades, the accepted nickel diffusivity in silicon has been DNi(T)=2.3×10−3exp(−0.47 eV/kBT) cm2/s, a surprisingly low value given reports of rapid nickel diffusion in industrial applications. In this paper, we employ modern experimental methods to measure the higher nickel diffusivity DNi(T)=(1.69±0.74)×10−4exp(−0.15±0.04 eV/kBT) cm2/s. The measured activation energy is close to that predicted by first-principles theory using the nudged-elastic-band method. Our measured diffusivity of nickel is higher than previously published values at temperatures below 1150 °C, and orders of magnitude higher when extrapolated to room temperature. |
---|---|
ISSN: | 0021-8979 1089-7550 1089-7550 |
DOI: | 10.1063/1.4807799 |