Facile One-Step Route for the Development of in Situ Cocatalyst-Modified Ti3+ Self-Doped TiO2 for Improved Visible-Light Photocatalytic Activity

Development of visible-light-driven photocatalysts by employing a relatively simple, efficient, and cost-effective one-step process is essential for commercial applications. Herein, we report for the first time the synthesis of in situ Cu-ion modified Ti3+ self-doped rutile TiO2 by such a facile one...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2016-10, Vol.8 (41), p.27642-27653
Hauptverfasser: Kumar, Raju, Govindarajan, Sivakumar, Siri Kiran Janardhana, Reddy Kunda, Rao, Tata Narasinga, Joshi, Shrikant Vishwanath, Anandan, Srinivasan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Development of visible-light-driven photocatalysts by employing a relatively simple, efficient, and cost-effective one-step process is essential for commercial applications. Herein, we report for the first time the synthesis of in situ Cu-ion modified Ti3+ self-doped rutile TiO2 by such a facile one-step solution precursor plasma spray (SPPS) process using a water-soluble titanium precursor. In the SPPS process, Ti3+ self-doping on Ti4+ of rutile TiO2 is found to take place because of electron transfer from the created oxygen vacancies to Ti4+-ions. In situ Cu modification of the above Ti3+ self-doped rutile TiO2 by additionally introducing a Cu solution into plasma plume is also demonstrated. While the Ti3+ self-doping induces broad absorption in the visible-light region, the addition of Cu ion leads to even broader absorption in the visible region owing to resulting synergistic properties. The above materials were evaluated for various self-cleaning photocatalytic applications under visible-light illumination. Cu-ion modified Ti3+ self-doped rutile TiO2 is noted to exhibit a remarkably enhanced visible-light activity in comparison with Ti3+ self-doped rutile TiO2, with the latter itself outperforming commercial TiO2 photocatalysts, thereby suggesting the suitability of the material for indoor applications. The broad visible-light absorption by Ti3+ self-doping, the holes with strong oxidation power generated in the valence band, and electrons in Ti3+ isolated states that are effectively separated into the high reductive sites of Cu ions upon visible-light irradiation, accounts for improved photocatalytic activity. Moreover, the synthesis process (SPPS) provides a valuable alternative to orthodox multistep processes for the preparation of such visible-light-driven photocatalysts.
ISSN:1944-8244
1944-8252
1944-8252
DOI:10.1021/acsami.6b07000