The human amygdala is involved in general behavioral relevance detection: Evidence from an event-related functional magnetic resonance imaging Go-NoGo task
Abstract The amygdala is classically regarded as a detector of potential threat and as a critical component of the neural circuitry mediating conditioned fear responses. However, it has been reported that the human amygdala responds to multiple expressions of emotions as well as emotionally neutral...
Gespeichert in:
Veröffentlicht in: | Neuroscience 2008-10, Vol.156 (3), p.450-455 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract The amygdala is classically regarded as a detector of potential threat and as a critical component of the neural circuitry mediating conditioned fear responses. However, it has been reported that the human amygdala responds to multiple expressions of emotions as well as emotionally neutral stimuli of a novel, uncertain or ambiguous nature. Thus, it has been proposed that the function of the amygdala may be of a more general art, i.e. as a detector of behaviorally relevant stimuli [Sander D, Grafman J, Zalla T (2003) The human amygdala: an evolved system for relevance detection. Rev Neurosci 14:303–316]. To investigate this putative function of the amygdala, we used event related functional magnetic resonance imaging (fMRI) and a modified Go-NoGo task composed of behaviorally relevant and irrelevant letter and number stimuli. Analyses revealed bilateral amygdala activation in response to letter stimuli that were behaviorally relevant as compared with letters with less behavioral relevance. Similar results were obtained for relatively infrequent NoGo relevant stimuli as compared with more frequent Go stimuli. Our findings support a role for the human amygdala in general detection of behaviorally relevant stimuli. |
---|---|
ISSN: | 0306-4522 1873-7544 1873-7544 |
DOI: | 10.1016/j.neuroscience.2008.07.066 |