Computational Intelligence Techniques for Modelling the Critical Flashover Voltage of Insulators: From Accuracy to Comprehensibility
This paper copes with the problem of flashover voltage on polluted insulators, being one of the most important components of electric power systems. Α number of appropriately selected computational intelligence techniques are developed and applied for the modelling of the problem. Some of the applie...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper copes with the problem of flashover voltage on polluted insulators, being one of the most important components of electric power systems. Α number of appropriately selected computational intelligence techniques are developed and applied for the modelling of the problem. Some of the applied techniques work as black-box models, but they are capable of achieving highly accurate results (artificial neural networks and gravitational search algorithms). Other techniques, on the contrary, obtain results somewhat less accurate, but highly comprehensible (genetic programming and inductive decision trees). However, all the applied techniques outperform standard data analysis approaches, such as regression models. The variables used in the analyses are the insulator’s maximum diameter, height, creepage distance, insulator’s manufacturing constant, and also the insulator’s pollution. In this research work the critical flashover voltage on a polluted insulator is expressed as a function of the aforementioned variables. The used database consists of 168 different cases of polluted insulators, created through both actual and simulated values. Results are encouraging, with room for further study, aiming towards the development of models for the proper inspection and maintenance of insulators. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-319-60042-0_35 |