More on the Ridge Parameter Estimators for the Gamma Ridge Regression Model: Simulation and Applications
The Gamma ridge regression estimator (GRRE) is commonly used to solve the problem of multicollinearity, when the response variable follows the gamma distribution. Estimation of the ridge parameter estimator is an important issue in the GRRE as well as for other models. Numerous ridge parameter estim...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2022, Vol.2022, p.1-18 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Gamma ridge regression estimator (GRRE) is commonly used to solve the problem of multicollinearity, when the response variable follows the gamma distribution. Estimation of the ridge parameter estimator is an important issue in the GRRE as well as for other models. Numerous ridge parameter estimators are proposed for the linear and other regression models. So, in this study, we generalized these estimators for the Gamma ridge regression model. A Monte Carlo simulation study and two real-life applications are carried out to evaluate the performance of the proposed ridge regression estimators and then compared with the maximum likelihood method and some existing ridge regression estimators. Based on the simulation study and real-life applications results, we suggest some better choices of the ridge regression estimators for practitioners by applying the Gamma regression model with correlated explanatory variables. |
---|---|
ISSN: | 1024-123X 1563-5147 1563-5147 |
DOI: | 10.1155/2022/6769421 |