More on the Ridge Parameter Estimators for the Gamma Ridge Regression Model: Simulation and Applications

The Gamma ridge regression estimator (GRRE) is commonly used to solve the problem of multicollinearity, when the response variable follows the gamma distribution. Estimation of the ridge parameter estimator is an important issue in the GRRE as well as for other models. Numerous ridge parameter estim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2022, Vol.2022, p.1-18
Hauptverfasser: Yasin, Ahad, Amin, Muhammad, Qasim, Muhammad, Muse, Abdisalam Hassan, Soliman, Adam Braima
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Gamma ridge regression estimator (GRRE) is commonly used to solve the problem of multicollinearity, when the response variable follows the gamma distribution. Estimation of the ridge parameter estimator is an important issue in the GRRE as well as for other models. Numerous ridge parameter estimators are proposed for the linear and other regression models. So, in this study, we generalized these estimators for the Gamma ridge regression model. A Monte Carlo simulation study and two real-life applications are carried out to evaluate the performance of the proposed ridge regression estimators and then compared with the maximum likelihood method and some existing ridge regression estimators. Based on the simulation study and real-life applications results, we suggest some better choices of the ridge regression estimators for practitioners by applying the Gamma regression model with correlated explanatory variables.
ISSN:1024-123X
1563-5147
1563-5147
DOI:10.1155/2022/6769421