Stabilized nonconforming finite element methods for data assimilation in incompressible flows

We consider a stabilized nonconforming finite element method for data assimilation in incompressible flow subject to the Stokes equations. The method uses a primal dual structure that allows for the inclusion of nonstandard data. Error estimates are obtained that are optimal compared to the conditio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of computation 2018-05, Vol.87 (311), p.1029-1050
Hauptverfasser: BURMAN, ERIK, HANSBO, PETER
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a stabilized nonconforming finite element method for data assimilation in incompressible flow subject to the Stokes equations. The method uses a primal dual structure that allows for the inclusion of nonstandard data. Error estimates are obtained that are optimal compared to the conditional stability of the ill-posed data assimilation problem.
ISSN:0025-5718
1088-6842
1088-6842
DOI:10.1090/mcom/3255