Anomaly Detection for Road Traffic: A Visual Analytics Framework

The analysis of large amounts of multidimensional road traffic data for anomaly detection is a complex task. Visual analytics can bridge the gap between computational and human approaches to detecting anomalous behavior in road traffic, making the data analysis process more transparent. In this pape...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2017-08, Vol.18 (8), p.2260-2270
Hauptverfasser: Riveiro, Maria, Lebram, Mikael, Elmer, Marcus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The analysis of large amounts of multidimensional road traffic data for anomaly detection is a complex task. Visual analytics can bridge the gap between computational and human approaches to detecting anomalous behavior in road traffic, making the data analysis process more transparent. In this paper, we present a visual analytics framework that provides support for: 1) the exploration of multidimensional road traffic data; 2) the analysis of normal behavioral models built from data; 3) the detection of anomalous events; and 4) the explanation of anomalous events. We illustrate the use of this framework with examples from a large database of real road traffic data collected from several areas in Europe. Finally, we report on feedback provided by expert analysts from Volvo Group Trucks Technology, regarding its design and usability.
ISSN:1524-9050
1558-0016
1558-0016
DOI:10.1109/TITS.2017.2675710