Hybrid Dynamic Resampling Algorithms for Evolutionary Multi-objective Optimization of Invariant-Noise Problems

In Simulation-based Evolutionary Multi-objective Optimization (EMO) the available time for optimization usually is limited. Since many real-world optimization problems are stochastic models, the optimization algorithm has to employ a noise compensation technique for the objective values. This articl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Siegmund, Florian, Ng, Amos H. C., Deb, Kalyanmoy
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In Simulation-based Evolutionary Multi-objective Optimization (EMO) the available time for optimization usually is limited. Since many real-world optimization problems are stochastic models, the optimization algorithm has to employ a noise compensation technique for the objective values. This article analyzes Dynamic Resampling algorithms for handling the objective noise. Dynamic Resampling improves the objective value accuracy by spending more time to evaluate the solutions multiple times, which tightens the optimization time limit even more. This circumstance can be used to design Dynamic Resampling algorithms with a better sampling allocation strategy that uses the time limit. In our previous work, we investigated Time-based Hybrid Resampling algorithms for Preference-based EMO. In this article, we extend our studies to general EMO which aims to find a converged and diverse set of alternative solutions along the whole Pareto-front of the problem. We focus on problems with an invariant noise level, i.e. a flat noise landscape.
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-319-31153-1_21