Surface waves in an open circular waveguide filled with inhomogeneous chiral media

Propagation of surface waves in a radially inhomogeneous chiral waveguide is considered. The setting is reduced to a boundary eigenvalue problem for the longitudinal components of the electromagnetic field in Sobolev spaces. To find the solution, variational formulation is used. The variational prob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electromagnetic waves and applications 2022-03, Vol.36 (4), p.505-519
Hauptverfasser: Smolkin, Eugene, Smirnov, Yury, Shestopalov, Yury
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Propagation of surface waves in a radially inhomogeneous chiral waveguide is considered. The setting is reduced to a boundary eigenvalue problem for the longitudinal components of the electromagnetic field in Sobolev spaces. To find the solution, variational formulation is used. The variational problem is reduced to the analysis of an operator-valued function. Discreteness of the spectrum is proved and distribution of the characteristic numbers of the operator-valued function on the complex plane is determined. The results of numerical modeling of the spectrum of propagating surface waves in an open chiral waveguide are presented.
ISSN:0920-5071
1569-3937
1569-3937
DOI:10.1080/09205071.2021.1973913