QMFND: A quantum multimodal fusion-based fake news detection model for social media

Fake news is frequently disseminated through social media, which significantly impacts public perception and individual decision-making. Accurate identification of fake news on social media is usually time-consuming, laborious, and difficult. Although the leveraging of machine learning technologies...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information fusion 2024-04, Vol.104, p.102172, Article 102172
Hauptverfasser: Qu, Zhiguo, Meng, Yunyi, Muhammad, Ghulam, Tiwari, Prayag
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fake news is frequently disseminated through social media, which significantly impacts public perception and individual decision-making. Accurate identification of fake news on social media is usually time-consuming, laborious, and difficult. Although the leveraging of machine learning technologies can facilitate automated authenticity checks, the time-sensitive and voluminous nature of the data brings considerable challenge for fake news detection. To address this issue, this paper proposes a quantum multimodal fusion-based model for fake news detection (QMFND). QMFND integrates the extracted images and textual features, and passes them through a proposed quantum convolutional neural network (QCNN) to obtain discriminative results. By testing QMFND on two social media datasets, Gossip and Politifact, it is proved that its detection performance is equal to or even surpasses that of classical models. The effects of various parameters are further investigated. The QCNN not only has good expressibility and entangling capability but also has good robustness against quantum noise. The code is available at © 2023 Elsevier B.V.
ISSN:1566-2535
1872-6305
DOI:10.1016/j.inffus.2023.102172