Absorption of intense regular and noise waves in relaxing media
An integro-differential equation is written down that contains terms responsible for nonlinear absorption, visco-heat-conducting dissipation, and relaxation processes in a medium. A general integral expression is obtained for calculating energy losses of the wave with arbitrary characteristics—inten...
Gespeichert in:
Veröffentlicht in: | Acoustical physics 2014, Vol.60 (5), p.499-505 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An integro-differential equation is written down that contains terms responsible for nonlinear absorption, visco-heat-conducting dissipation, and relaxation processes in a medium. A general integral expression is obtained for calculating energy losses of the wave with arbitrary characteristics—intensity, profile (frequency spectrum), and kernel describing the internal dynamics of the medium. It is shown that for weak waves, the general integral leads to well-known results of a linear approximation. Profiles of stationary solutions are constructed both for an exponential relaxation kernel and for other types of kernels. Energy losses at the front of week shock waves are calculated. General integral formulas are obtained for energy losses of intense noise, which are determined by the form of the kernel, the structure of the noise correlation function, and the mean square of the derivative of realization of a random process. |
---|---|
ISSN: | 1063-7710 1562-6865 1562-6865 |
DOI: | 10.1134/S106377101405011X |