A long-memory integer-valued time series model, INARFIMA, for financial application

A model to account for the long-memory property in a count data framework is proposed and applied to high-frequency stock transactions data. By combining features of the INARMA and ARFIMA models, an Integer-valued Auto Regressive Fractionally Integrated Moving Average (INARFIMA) model is proposed. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantitative finance 2014-12, Vol.14 (12), p.2225-2235
1. Verfasser: Quoreshi, A. M. M. Shahiduzzaman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A model to account for the long-memory property in a count data framework is proposed and applied to high-frequency stock transactions data. By combining features of the INARMA and ARFIMA models, an Integer-valued Auto Regressive Fractionally Integrated Moving Average (INARFIMA) model is proposed. The unconditional and conditional first- and second-order moments are given. The CLS, FGLS and GMM estimators are discussed. In its empirical application to two stock series for AstraZeneca and Ericsson B, we find that both series have a fractional integration property.
ISSN:1469-7688
1469-7696
1469-7696
DOI:10.1080/14697688.2012.711911