The Lindelöf number of Cp(X)×Cp(X) for strongly zero-dimensional X
We prove that if X is a strongly zero-dimensional space, then for every locally compact second-countable space M , C p ( X, M ) is a continuous image of a closed subspace of C p ( X ). It follows in particular, that for strongly zero-dimensional spaces X , the Lindelöf number of C p ( X )× C p ( X )...
Gespeichert in:
Veröffentlicht in: | Central European journal of mathematics 2011, Vol.9 (5), p.978-983 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that if
X
is a strongly zero-dimensional space, then for every locally compact second-countable space
M
,
C
p
(
X, M
) is a continuous image of a closed subspace of
C
p
(
X
). It follows in particular, that for strongly zero-dimensional spaces
X
, the Lindelöf number of
C
p
(
X
)×
C
p
(
X
) coincides with the Lindelöf number of
C
p
(
X
). We also prove that
l
(
C
p
(
X
n
)
κ
) ≤
l
(
C
p
(
X
)
κ
) whenever
κ
is an infinite cardinal and
X
is a strongly zero-dimensional union of at most
κ
compact subspaces. |
---|---|
ISSN: | 1895-1074 1644-3616 |
DOI: | 10.2478/s11533-011-0050-y |