An l≠p-interpolation of genuine p-adic L-functions
Let F be a totally real field, l and p distinct odd prime unramified in F and l a prime above l . Let K / F be a p -ordinary CM quadratic extension and λ an arithmetic Hecke character over K . Hida constructed a measure on the l -anticyclotomic class group of K interpolating the normalised Hecke L -...
Gespeichert in:
Veröffentlicht in: | Research in the mathematical sciences 2016-12, Vol.3 (1) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
F
be a totally real field,
l
and
p
distinct odd prime unramified in
F
and
l
a prime above
l
. Let
K
/
F
be a
p
-ordinary CM quadratic extension and
λ
an arithmetic Hecke character over
K
. Hida constructed a measure on the
l
-anticyclotomic class group of
K
interpolating the normalised Hecke
L
-values
L
alg
,
l
(
0
,
λ
ν
)
, as
ν
varies over the finite order
l
-power conductor anticyclotomic characters. In this article, we interpolate the measures as
λ
varies in a
p
-adic family. In particular, this gives
p
-adic deformation of the measures. An analogue holds in the case of self-dual Rankin–Selberg convolution of a Hilbert modular form and a theta series. In the case of root number
-
1
, we describe an upcoming analogous interpolation of the
p
-adic Abel–Jacobi image of generalised Heegner cycles associated with the convolution. |
---|---|
ISSN: | 2197-9847 |
DOI: | 10.1186/s40687-016-0060-2 |