A new reweighted l1 minimization algorithm for image deblurring

In this paper, a new reweighted l 1 minimization algorithm for image deblurring is proposed. The algorithm is based on a generalized inverse iteration and linearized Bregman iteration, which is used for the weighted l 1 minimization problem min u ∈ R n { ∥ u ∥ ω : A u = f } . In the computing proces...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of inequalities and applications 2014-06, Vol.2014 (1)
Hauptverfasser: Qiao, Tiantian, Wu, Boying, Li, Weiguo, Dong, Alun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a new reweighted l 1 minimization algorithm for image deblurring is proposed. The algorithm is based on a generalized inverse iteration and linearized Bregman iteration, which is used for the weighted l 1 minimization problem min u ∈ R n { ∥ u ∥ ω : A u = f } . In the computing process, the effective using of signal information can make up the detailed features of image, which may be lost in the deblurring process. Numerical experiments confirm that the new reweighted algorithm for image restoration is effective and competitive to the recent state-of-the-art algorithms.
ISSN:1029-242X
DOI:10.1186/1029-242X-2014-238