Nondegenerate Hamiltonian Hopf Bifurcations in Resonance or

This paper deals with the analysis of Hamiltonian Hopf bifurcations in three-degree-of-freedom systems, for which the frequencies of the linearization of the corresponding Hamiltonians are in resonance ( or ). We obtain the truncated second-order normal form that is not integrable and expressed in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Regular & chaotic dynamics 2020, Vol.25 (6), p.522-536
Hauptverfasser: Mazrooei-Sebdani, Reza, Hakimi, Elham
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper deals with the analysis of Hamiltonian Hopf bifurcations in three-degree-of-freedom systems, for which the frequencies of the linearization of the corresponding Hamiltonians are in resonance ( or ). We obtain the truncated second-order normal form that is not integrable and expressed in terms of the invariants of the reduced phase space. The truncated first-order normal form gives rise to an integrable system that is analyzed using a reduction to a one-degree-of-freedom system. In this paper, some detuning parameters are considered and nondegenerate Hamiltonian Hopf bifurcations are found. To study Hamiltonian Hopf bifurcations, we transform the reduced Hamiltonian into standard form.
ISSN:1560-3547
1560-3547
DOI:10.1134/S1560354720060027