The Strong -Sylow Theorem for the Groups PSL

Let be a set of primes. A finite group  is a  -group if all prime divisors of the order of  belong to  . Following Wielandt, the -Sylow theorem holds for if all maximal -subgroups of are conjugate; if the -Sylow theorem holds for every subgroup of  then the strong -Sylow theorem holds for  . The str...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Siberian mathematical journal 2024, Vol.65 (5), p.1187-1194
Hauptverfasser: Revin, D. O., Shepelev, V. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let be a set of primes. A finite group  is a  -group if all prime divisors of the order of  belong to  . Following Wielandt, the -Sylow theorem holds for if all maximal -subgroups of are conjugate; if the -Sylow theorem holds for every subgroup of  then the strong -Sylow theorem holds for  . The strong -Sylow theorem is known to hold for  if and only if it holds for every nonabelian composition factor of  . In 1979, Wielandt asked which finite simple nonabelian groups obey the strong -Sylow theorem. By now the answer is known for sporadic and alternating groups. We give some arithmetic criterion for the validity of the strong -Sylow theorem for the groups  .
ISSN:0037-4466
1573-9260
DOI:10.1134/S0037446624050173