The Strong -Sylow Theorem for the Groups PSL
Let be a set of primes. A finite group is a -group if all prime divisors of the order of belong to . Following Wielandt, the -Sylow theorem holds for if all maximal -subgroups of are conjugate; if the -Sylow theorem holds for every subgroup of then the strong -Sylow theorem holds for . The str...
Gespeichert in:
Veröffentlicht in: | Siberian mathematical journal 2024, Vol.65 (5), p.1187-1194 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
be a set of primes. A finite group
is a
-group if all prime divisors of the order of
belong to
. Following Wielandt, the
-Sylow theorem holds for
if all maximal
-subgroups of
are conjugate; if the
-Sylow theorem holds for every subgroup of
then the strong
-Sylow theorem holds for
. The strong
-Sylow theorem is known to hold for
if and only if it holds for every nonabelian composition factor of
. In 1979, Wielandt asked which finite simple nonabelian groups obey the strong
-Sylow theorem. By now the answer is known for sporadic and alternating groups. We give some arithmetic criterion for the validity of the strong
-Sylow theorem for the groups
. |
---|---|
ISSN: | 0037-4466 1573-9260 |
DOI: | 10.1134/S0037446624050173 |