Follow-Up Experimental Designs for Computer Models and Physical Processes

In many branches of physical science, when the complex physical phenomena are either too expensive or too time consuming to observe, deterministic computer codes are often used to simulate these processes Nonetheless, true physical processes are also observed in some disciplines. It is preferred to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical theory and practice 2011-03, Vol.5 (1), p.119-136
Hauptverfasser: Ranjan, Pritam, Lu, Wilson, Bingham, Derek, Reese, Shane, Williams, Brian J., Chou, Chuan-Chih, Doss, Forrest, Grosskopf, Michael, Holloway, James Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 136
container_issue 1
container_start_page 119
container_title Journal of statistical theory and practice
container_volume 5
creator Ranjan, Pritam
Lu, Wilson
Bingham, Derek
Reese, Shane
Williams, Brian J.
Chou, Chuan-Chih
Doss, Forrest
Grosskopf, Michael
Holloway, James Paul
description In many branches of physical science, when the complex physical phenomena are either too expensive or too time consuming to observe, deterministic computer codes are often used to simulate these processes Nonetheless, true physical processes are also observed in some disciplines. It is preferred to integrate both the true physical process and the computer model data for better understanding of the underlying phenomena. In this paper, we develop a methodology for selecting optimal follow-up designs based on integrated mean squared error that help us capture and reduce prediction uncertainty as much as possible. We also compare the efficiency of the optimal designs with the intuitive choices for the follow-up computer and field trials.
doi_str_mv 10.1080/15598608.2011.10412055
format Article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_springer_journals_10_1080_15598608_2011_10412055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_15598608_2011_10412055</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-c451b25e09f0d11495e88e94cce4780546a3524991db7841ebedf40e946f9d43</originalsourceid><addsrcrecordid>eNqFkMFuwjAMhqNpk8bYXmHqC5TZbRLSI2KwITGNAztHIXVZUWmqBMR4-wUxduVky_Zn_foYe0YYICh4QSEKJUENMkCMI44ZCHHDeqdFqiTK2_8e1D17CGEDIBHyvMdmU9c07pB-dcnkpyNfb6ndmSZ5pVCv25BUzidjt-32O_LJhyupCYlpy2TxfQy1jYcL7yyFQOGR3VWmCfT0V_tsOZ0sx-_p_PNtNh7NU5tL3KWWC1xlgqCooETkhSClqODWEh8qEFyaXGS8KLBcDRVHWlFZcYgXsipKnveZPL-13oXgqdJdDG38USPokw998aFPPvTFRwSHZzBEoF2T1xu3922Mep0cncm6jTq25uB8U-qdOTbOV960tg46v_LjF_H_d4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Follow-Up Experimental Designs for Computer Models and Physical Processes</title><source>SpringerNature Journals</source><creator>Ranjan, Pritam ; Lu, Wilson ; Bingham, Derek ; Reese, Shane ; Williams, Brian J. ; Chou, Chuan-Chih ; Doss, Forrest ; Grosskopf, Michael ; Holloway, James Paul</creator><creatorcontrib>Ranjan, Pritam ; Lu, Wilson ; Bingham, Derek ; Reese, Shane ; Williams, Brian J. ; Chou, Chuan-Chih ; Doss, Forrest ; Grosskopf, Michael ; Holloway, James Paul</creatorcontrib><description>In many branches of physical science, when the complex physical phenomena are either too expensive or too time consuming to observe, deterministic computer codes are often used to simulate these processes Nonetheless, true physical processes are also observed in some disciplines. It is preferred to integrate both the true physical process and the computer model data for better understanding of the underlying phenomena. In this paper, we develop a methodology for selecting optimal follow-up designs based on integrated mean squared error that help us capture and reduce prediction uncertainty as much as possible. We also compare the efficiency of the optimal designs with the intuitive choices for the follow-up computer and field trials.</description><identifier>ISSN: 1559-8608</identifier><identifier>EISSN: 1559-8616</identifier><identifier>DOI: 10.1080/15598608.2011.10412055</identifier><language>eng</language><publisher>Cham: Taylor &amp; Francis Group</publisher><subject>Gaussian Process ; Integrated Mean Squared Error ; Model calibration ; Probability Theory and Stochastic Processes ; Statistical Theory and Methods ; Statistics</subject><ispartof>Journal of statistical theory and practice, 2011-03, Vol.5 (1), p.119-136</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2011</rights><rights>Grace Scientific Publishing 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-c451b25e09f0d11495e88e94cce4780546a3524991db7841ebedf40e946f9d43</citedby><cites>FETCH-LOGICAL-c361t-c451b25e09f0d11495e88e94cce4780546a3524991db7841ebedf40e946f9d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1080/15598608.2011.10412055$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1080/15598608.2011.10412055$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ranjan, Pritam</creatorcontrib><creatorcontrib>Lu, Wilson</creatorcontrib><creatorcontrib>Bingham, Derek</creatorcontrib><creatorcontrib>Reese, Shane</creatorcontrib><creatorcontrib>Williams, Brian J.</creatorcontrib><creatorcontrib>Chou, Chuan-Chih</creatorcontrib><creatorcontrib>Doss, Forrest</creatorcontrib><creatorcontrib>Grosskopf, Michael</creatorcontrib><creatorcontrib>Holloway, James Paul</creatorcontrib><title>Follow-Up Experimental Designs for Computer Models and Physical Processes</title><title>Journal of statistical theory and practice</title><addtitle>J Stat Theory Pract</addtitle><description>In many branches of physical science, when the complex physical phenomena are either too expensive or too time consuming to observe, deterministic computer codes are often used to simulate these processes Nonetheless, true physical processes are also observed in some disciplines. It is preferred to integrate both the true physical process and the computer model data for better understanding of the underlying phenomena. In this paper, we develop a methodology for selecting optimal follow-up designs based on integrated mean squared error that help us capture and reduce prediction uncertainty as much as possible. We also compare the efficiency of the optimal designs with the intuitive choices for the follow-up computer and field trials.</description><subject>Gaussian Process</subject><subject>Integrated Mean Squared Error</subject><subject>Model calibration</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><issn>1559-8608</issn><issn>1559-8616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkMFuwjAMhqNpk8bYXmHqC5TZbRLSI2KwITGNAztHIXVZUWmqBMR4-wUxduVky_Zn_foYe0YYICh4QSEKJUENMkCMI44ZCHHDeqdFqiTK2_8e1D17CGEDIBHyvMdmU9c07pB-dcnkpyNfb6ndmSZ5pVCv25BUzidjt-32O_LJhyupCYlpy2TxfQy1jYcL7yyFQOGR3VWmCfT0V_tsOZ0sx-_p_PNtNh7NU5tL3KWWC1xlgqCooETkhSClqODWEh8qEFyaXGS8KLBcDRVHWlFZcYgXsipKnveZPL-13oXgqdJdDG38USPokw998aFPPvTFRwSHZzBEoF2T1xu3922Mep0cncm6jTq25uB8U-qdOTbOV960tg46v_LjF_H_d4A</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Ranjan, Pritam</creator><creator>Lu, Wilson</creator><creator>Bingham, Derek</creator><creator>Reese, Shane</creator><creator>Williams, Brian J.</creator><creator>Chou, Chuan-Chih</creator><creator>Doss, Forrest</creator><creator>Grosskopf, Michael</creator><creator>Holloway, James Paul</creator><general>Taylor &amp; Francis Group</general><general>Springer International Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110301</creationdate><title>Follow-Up Experimental Designs for Computer Models and Physical Processes</title><author>Ranjan, Pritam ; Lu, Wilson ; Bingham, Derek ; Reese, Shane ; Williams, Brian J. ; Chou, Chuan-Chih ; Doss, Forrest ; Grosskopf, Michael ; Holloway, James Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-c451b25e09f0d11495e88e94cce4780546a3524991db7841ebedf40e946f9d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Gaussian Process</topic><topic>Integrated Mean Squared Error</topic><topic>Model calibration</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ranjan, Pritam</creatorcontrib><creatorcontrib>Lu, Wilson</creatorcontrib><creatorcontrib>Bingham, Derek</creatorcontrib><creatorcontrib>Reese, Shane</creatorcontrib><creatorcontrib>Williams, Brian J.</creatorcontrib><creatorcontrib>Chou, Chuan-Chih</creatorcontrib><creatorcontrib>Doss, Forrest</creatorcontrib><creatorcontrib>Grosskopf, Michael</creatorcontrib><creatorcontrib>Holloway, James Paul</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of statistical theory and practice</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ranjan, Pritam</au><au>Lu, Wilson</au><au>Bingham, Derek</au><au>Reese, Shane</au><au>Williams, Brian J.</au><au>Chou, Chuan-Chih</au><au>Doss, Forrest</au><au>Grosskopf, Michael</au><au>Holloway, James Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Follow-Up Experimental Designs for Computer Models and Physical Processes</atitle><jtitle>Journal of statistical theory and practice</jtitle><stitle>J Stat Theory Pract</stitle><date>2011-03-01</date><risdate>2011</risdate><volume>5</volume><issue>1</issue><spage>119</spage><epage>136</epage><pages>119-136</pages><issn>1559-8608</issn><eissn>1559-8616</eissn><abstract>In many branches of physical science, when the complex physical phenomena are either too expensive or too time consuming to observe, deterministic computer codes are often used to simulate these processes Nonetheless, true physical processes are also observed in some disciplines. It is preferred to integrate both the true physical process and the computer model data for better understanding of the underlying phenomena. In this paper, we develop a methodology for selecting optimal follow-up designs based on integrated mean squared error that help us capture and reduce prediction uncertainty as much as possible. We also compare the efficiency of the optimal designs with the intuitive choices for the follow-up computer and field trials.</abstract><cop>Cham</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/15598608.2011.10412055</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1559-8608
ispartof Journal of statistical theory and practice, 2011-03, Vol.5 (1), p.119-136
issn 1559-8608
1559-8616
language eng
recordid cdi_springer_journals_10_1080_15598608_2011_10412055
source SpringerNature Journals
subjects Gaussian Process
Integrated Mean Squared Error
Model calibration
Probability Theory and Stochastic Processes
Statistical Theory and Methods
Statistics
title Follow-Up Experimental Designs for Computer Models and Physical Processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T01%3A21%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Follow-Up%20Experimental%20Designs%20for%20Computer%20Models%20and%20Physical%20Processes&rft.jtitle=Journal%20of%20statistical%20theory%20and%20practice&rft.au=Ranjan,%20Pritam&rft.date=2011-03-01&rft.volume=5&rft.issue=1&rft.spage=119&rft.epage=136&rft.pages=119-136&rft.issn=1559-8608&rft.eissn=1559-8616&rft_id=info:doi/10.1080/15598608.2011.10412055&rft_dat=%3Ccrossref_sprin%3E10_1080_15598608_2011_10412055%3C/crossref_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true