Follow-Up Experimental Designs for Computer Models and Physical Processes
In many branches of physical science, when the complex physical phenomena are either too expensive or too time consuming to observe, deterministic computer codes are often used to simulate these processes Nonetheless, true physical processes are also observed in some disciplines. It is preferred to...
Gespeichert in:
Veröffentlicht in: | Journal of statistical theory and practice 2011-03, Vol.5 (1), p.119-136 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 136 |
---|---|
container_issue | 1 |
container_start_page | 119 |
container_title | Journal of statistical theory and practice |
container_volume | 5 |
creator | Ranjan, Pritam Lu, Wilson Bingham, Derek Reese, Shane Williams, Brian J. Chou, Chuan-Chih Doss, Forrest Grosskopf, Michael Holloway, James Paul |
description | In many branches of physical science, when the complex physical phenomena are either too expensive or too time consuming to observe, deterministic computer codes are often used to simulate these processes Nonetheless, true physical processes are also observed in some disciplines. It is preferred to integrate both the true physical process and the computer model data for better understanding of the underlying phenomena. In this paper, we develop a methodology for selecting optimal follow-up designs based on integrated mean squared error that help us capture and reduce prediction uncertainty as much as possible. We also compare the efficiency of the optimal designs with the intuitive choices for the follow-up computer and field trials. |
doi_str_mv | 10.1080/15598608.2011.10412055 |
format | Article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_springer_journals_10_1080_15598608_2011_10412055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_15598608_2011_10412055</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-c451b25e09f0d11495e88e94cce4780546a3524991db7841ebedf40e946f9d43</originalsourceid><addsrcrecordid>eNqFkMFuwjAMhqNpk8bYXmHqC5TZbRLSI2KwITGNAztHIXVZUWmqBMR4-wUxduVky_Zn_foYe0YYICh4QSEKJUENMkCMI44ZCHHDeqdFqiTK2_8e1D17CGEDIBHyvMdmU9c07pB-dcnkpyNfb6ndmSZ5pVCv25BUzidjt-32O_LJhyupCYlpy2TxfQy1jYcL7yyFQOGR3VWmCfT0V_tsOZ0sx-_p_PNtNh7NU5tL3KWWC1xlgqCooETkhSClqODWEh8qEFyaXGS8KLBcDRVHWlFZcYgXsipKnveZPL-13oXgqdJdDG38USPokw998aFPPvTFRwSHZzBEoF2T1xu3922Mep0cncm6jTq25uB8U-qdOTbOV960tg46v_LjF_H_d4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Follow-Up Experimental Designs for Computer Models and Physical Processes</title><source>SpringerNature Journals</source><creator>Ranjan, Pritam ; Lu, Wilson ; Bingham, Derek ; Reese, Shane ; Williams, Brian J. ; Chou, Chuan-Chih ; Doss, Forrest ; Grosskopf, Michael ; Holloway, James Paul</creator><creatorcontrib>Ranjan, Pritam ; Lu, Wilson ; Bingham, Derek ; Reese, Shane ; Williams, Brian J. ; Chou, Chuan-Chih ; Doss, Forrest ; Grosskopf, Michael ; Holloway, James Paul</creatorcontrib><description>In many branches of physical science, when the complex physical phenomena are either too expensive or too time consuming to observe, deterministic computer codes are often used to simulate these processes Nonetheless, true physical processes are also observed in some disciplines. It is preferred to integrate both the true physical process and the computer model data for better understanding of the underlying phenomena. In this paper, we develop a methodology for selecting optimal follow-up designs based on integrated mean squared error that help us capture and reduce prediction uncertainty as much as possible. We also compare the efficiency of the optimal designs with the intuitive choices for the follow-up computer and field trials.</description><identifier>ISSN: 1559-8608</identifier><identifier>EISSN: 1559-8616</identifier><identifier>DOI: 10.1080/15598608.2011.10412055</identifier><language>eng</language><publisher>Cham: Taylor & Francis Group</publisher><subject>Gaussian Process ; Integrated Mean Squared Error ; Model calibration ; Probability Theory and Stochastic Processes ; Statistical Theory and Methods ; Statistics</subject><ispartof>Journal of statistical theory and practice, 2011-03, Vol.5 (1), p.119-136</ispartof><rights>Copyright Taylor & Francis Group, LLC 2011</rights><rights>Grace Scientific Publishing 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-c451b25e09f0d11495e88e94cce4780546a3524991db7841ebedf40e946f9d43</citedby><cites>FETCH-LOGICAL-c361t-c451b25e09f0d11495e88e94cce4780546a3524991db7841ebedf40e946f9d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1080/15598608.2011.10412055$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1080/15598608.2011.10412055$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ranjan, Pritam</creatorcontrib><creatorcontrib>Lu, Wilson</creatorcontrib><creatorcontrib>Bingham, Derek</creatorcontrib><creatorcontrib>Reese, Shane</creatorcontrib><creatorcontrib>Williams, Brian J.</creatorcontrib><creatorcontrib>Chou, Chuan-Chih</creatorcontrib><creatorcontrib>Doss, Forrest</creatorcontrib><creatorcontrib>Grosskopf, Michael</creatorcontrib><creatorcontrib>Holloway, James Paul</creatorcontrib><title>Follow-Up Experimental Designs for Computer Models and Physical Processes</title><title>Journal of statistical theory and practice</title><addtitle>J Stat Theory Pract</addtitle><description>In many branches of physical science, when the complex physical phenomena are either too expensive or too time consuming to observe, deterministic computer codes are often used to simulate these processes Nonetheless, true physical processes are also observed in some disciplines. It is preferred to integrate both the true physical process and the computer model data for better understanding of the underlying phenomena. In this paper, we develop a methodology for selecting optimal follow-up designs based on integrated mean squared error that help us capture and reduce prediction uncertainty as much as possible. We also compare the efficiency of the optimal designs with the intuitive choices for the follow-up computer and field trials.</description><subject>Gaussian Process</subject><subject>Integrated Mean Squared Error</subject><subject>Model calibration</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><issn>1559-8608</issn><issn>1559-8616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkMFuwjAMhqNpk8bYXmHqC5TZbRLSI2KwITGNAztHIXVZUWmqBMR4-wUxduVky_Zn_foYe0YYICh4QSEKJUENMkCMI44ZCHHDeqdFqiTK2_8e1D17CGEDIBHyvMdmU9c07pB-dcnkpyNfb6ndmSZ5pVCv25BUzidjt-32O_LJhyupCYlpy2TxfQy1jYcL7yyFQOGR3VWmCfT0V_tsOZ0sx-_p_PNtNh7NU5tL3KWWC1xlgqCooETkhSClqODWEh8qEFyaXGS8KLBcDRVHWlFZcYgXsipKnveZPL-13oXgqdJdDG38USPokw998aFPPvTFRwSHZzBEoF2T1xu3922Mep0cncm6jTq25uB8U-qdOTbOV960tg46v_LjF_H_d4A</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Ranjan, Pritam</creator><creator>Lu, Wilson</creator><creator>Bingham, Derek</creator><creator>Reese, Shane</creator><creator>Williams, Brian J.</creator><creator>Chou, Chuan-Chih</creator><creator>Doss, Forrest</creator><creator>Grosskopf, Michael</creator><creator>Holloway, James Paul</creator><general>Taylor & Francis Group</general><general>Springer International Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110301</creationdate><title>Follow-Up Experimental Designs for Computer Models and Physical Processes</title><author>Ranjan, Pritam ; Lu, Wilson ; Bingham, Derek ; Reese, Shane ; Williams, Brian J. ; Chou, Chuan-Chih ; Doss, Forrest ; Grosskopf, Michael ; Holloway, James Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-c451b25e09f0d11495e88e94cce4780546a3524991db7841ebedf40e946f9d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Gaussian Process</topic><topic>Integrated Mean Squared Error</topic><topic>Model calibration</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ranjan, Pritam</creatorcontrib><creatorcontrib>Lu, Wilson</creatorcontrib><creatorcontrib>Bingham, Derek</creatorcontrib><creatorcontrib>Reese, Shane</creatorcontrib><creatorcontrib>Williams, Brian J.</creatorcontrib><creatorcontrib>Chou, Chuan-Chih</creatorcontrib><creatorcontrib>Doss, Forrest</creatorcontrib><creatorcontrib>Grosskopf, Michael</creatorcontrib><creatorcontrib>Holloway, James Paul</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of statistical theory and practice</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ranjan, Pritam</au><au>Lu, Wilson</au><au>Bingham, Derek</au><au>Reese, Shane</au><au>Williams, Brian J.</au><au>Chou, Chuan-Chih</au><au>Doss, Forrest</au><au>Grosskopf, Michael</au><au>Holloway, James Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Follow-Up Experimental Designs for Computer Models and Physical Processes</atitle><jtitle>Journal of statistical theory and practice</jtitle><stitle>J Stat Theory Pract</stitle><date>2011-03-01</date><risdate>2011</risdate><volume>5</volume><issue>1</issue><spage>119</spage><epage>136</epage><pages>119-136</pages><issn>1559-8608</issn><eissn>1559-8616</eissn><abstract>In many branches of physical science, when the complex physical phenomena are either too expensive or too time consuming to observe, deterministic computer codes are often used to simulate these processes Nonetheless, true physical processes are also observed in some disciplines. It is preferred to integrate both the true physical process and the computer model data for better understanding of the underlying phenomena. In this paper, we develop a methodology for selecting optimal follow-up designs based on integrated mean squared error that help us capture and reduce prediction uncertainty as much as possible. We also compare the efficiency of the optimal designs with the intuitive choices for the follow-up computer and field trials.</abstract><cop>Cham</cop><pub>Taylor & Francis Group</pub><doi>10.1080/15598608.2011.10412055</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1559-8608 |
ispartof | Journal of statistical theory and practice, 2011-03, Vol.5 (1), p.119-136 |
issn | 1559-8608 1559-8616 |
language | eng |
recordid | cdi_springer_journals_10_1080_15598608_2011_10412055 |
source | SpringerNature Journals |
subjects | Gaussian Process Integrated Mean Squared Error Model calibration Probability Theory and Stochastic Processes Statistical Theory and Methods Statistics |
title | Follow-Up Experimental Designs for Computer Models and Physical Processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T01%3A21%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Follow-Up%20Experimental%20Designs%20for%20Computer%20Models%20and%20Physical%20Processes&rft.jtitle=Journal%20of%20statistical%20theory%20and%20practice&rft.au=Ranjan,%20Pritam&rft.date=2011-03-01&rft.volume=5&rft.issue=1&rft.spage=119&rft.epage=136&rft.pages=119-136&rft.issn=1559-8608&rft.eissn=1559-8616&rft_id=info:doi/10.1080/15598608.2011.10412055&rft_dat=%3Ccrossref_sprin%3E10_1080_15598608_2011_10412055%3C/crossref_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |