The Group-Theoretical Analysis of Nonlinear Optimal Control Problems with Hamiltonian Formalism

In this study, we pay attention to novel explicit closed-form solutions of optimal control problems in economic growth models described by Hamiltonian formalism by utilizing mathematical approaches based on the theory of Lie groups. For this analysis, the Hamiltonian functions, which are used to def...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nonlinear mathematical physics 2020-01, Vol.27 (1), p.106-129
Hauptverfasser: Polat, Gülden Gün, Özer, Teoman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, we pay attention to novel explicit closed-form solutions of optimal control problems in economic growth models described by Hamiltonian formalism by utilizing mathematical approaches based on the theory of Lie groups. For this analysis, the Hamiltonian functions, which are used to define an optimal control problem, are considered in two different types, namely, the current and present value Hamiltonians. Furthermore, the first-order conditions (FOCs) that deal with Pontrygain maximum principle satisfying both Hamiltonian functions are considered. FOCs for optimal control in the problem are studied here to deal with the first-order coupled systems. This study mainly focuses on the analysis of these systems concerning for to the theory of symmetry groups and related analytical approaches. First, Lie point symmetries of the first-order coupled systems are derived, and then by using the relationships between symmetries and Jacobi last multiplier method, the first integrals and corresponding invariant solutions for two different economic models are investigated. Additionally, the solutions of initial-value problems based on the transversality conditions in the optimal control theory of economic growth models are analyzed.
ISSN:1402-9251
1776-0852
1776-0852
DOI:10.1080/14029251.2020.1683985