A band-gap database for semiconducting inorganic materials calculated with hybrid functional
Semiconducting inorganic materials with band gaps ranging between 0 and 5 eV constitute major components in electronic, optoelectronic and photovoltaic devices. Since the band gap is a primary material property that affects the device performance, large band-gap databases are useful in selecting opt...
Gespeichert in:
Veröffentlicht in: | Scientific data 2020-11, Vol.7 (1), p.387-387, Article 387 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Semiconducting inorganic materials with band gaps ranging between 0 and 5 eV constitute major components in electronic, optoelectronic and photovoltaic devices. Since the band gap is a primary material property that affects the device performance, large band-gap databases are useful in selecting optimal materials in each application. While there exist several band-gap databases that are theoretically compiled by density-functional-theory calculations, they suffer from computational limitations such as band-gap underestimation and metastable magnetism. In this data descriptor, we present a computational database of band gaps for 10,481 materials compiled by applying a hybrid functional and considering the stable magnetic ordering. For benchmark materials, the root-mean-square error in reference to experimental data is 0.36 eV, significantly smaller than 0.75–1.05 eV in the existing databases. Furthermore, we identify many small-gap materials that are misclassified as metals in other databases. By providing accurate band gaps, the present database will be useful in screening materials in diverse applications.
Measurement(s)
band gap • semiconducting inorganic material
Technology Type(s)
computational modeling technique
Sample Characteristic - Environment
material entity
Machine-accessible metadata file describing the reported data:
https://doi.org/10.6084/m9.figshare.13083980 |
---|---|
ISSN: | 2052-4463 2052-4463 |
DOI: | 10.1038/s41597-020-00723-8 |