Dual-function enzyme catalysis for enantioselective carbon–nitrogen bond formation

Chiral amines can be made by insertion of a carbene into an N–H bond using two-catalyst systems that combine a transition metal-based carbene-transfer catalyst and a chiral proton-transfer catalyst to enforce stereocontrol. Haem proteins can effect carbene N–H insertion, but asymmetric protonation i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemistry 2021-12, Vol.13 (12), p.1166-1172
Hauptverfasser: Liu, Zhen, Calvó-Tusell, Carla, Zhou, Andrew Z., Chen, Kai, Garcia-Borràs, Marc, Arnold, Frances H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chiral amines can be made by insertion of a carbene into an N–H bond using two-catalyst systems that combine a transition metal-based carbene-transfer catalyst and a chiral proton-transfer catalyst to enforce stereocontrol. Haem proteins can effect carbene N–H insertion, but asymmetric protonation in an active site replete with proton sources is challenging. Here we describe engineered cytochrome P450 enzymes that catalyse carbene N–H insertion to prepare biologically relevant α-amino lactones with high activity and enantioselectivity (up to 32,100 total turnovers, >99% yield and 98% e.e.). These enzymes serve as dual-function catalysts, inducing carbene transfer and promoting the subsequent proton transfer with excellent stereoselectivity in a single active site. Computational studies uncover the detailed mechanism of this new-to-nature enzymatic reaction and explain how active-site residues accelerate this transformation and provide stereocontrol. A haem protein that serves as a dual-function catalyst capable of inserting a carbene into a N–H bond to form α-amino lactones has been reported. The enzyme catalyses both carbene transfer and the subsequent proton transfer in a single active site. This transformation can proceed at the gram scale with high efficiency and enantioselective control.
ISSN:1755-4330
1755-4349
DOI:10.1038/s41557-021-00794-z