Interactions between large molecules pose a puzzle for reference quantum mechanical methods
Quantum-mechanical methods are used for understanding molecular interactions throughout the natural sciences. Quantum diffusion Monte Carlo (DMC) and coupled cluster with single, double, and perturbative triple excitations [CCSD(T)] are state-of-the-art trusted wavefunction methods that have been sh...
Gespeichert in:
Veröffentlicht in: | Nature communications 2021-06, Vol.12 (1), p.3927-3927, Article 3927 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Quantum-mechanical methods are used for understanding molecular interactions throughout the natural sciences. Quantum diffusion Monte Carlo (DMC) and coupled cluster with single, double, and perturbative triple excitations [CCSD(T)] are state-of-the-art trusted wavefunction methods that have been shown to yield accurate interaction energies for small organic molecules. These methods provide valuable reference information for widely-used semi-empirical and machine learning potentials, especially where experimental information is scarce. However, agreement for systems beyond small molecules is a crucial remaining milestone for cementing the benchmark accuracy of these methods. We show that CCSD(T) and DMC interaction energies are not consistent for a set of polarizable supramolecules. Whilst there is agreement for some of the complexes, in a few key systems disagreements of up to 8 kcal mol
−1
remain. These findings thus indicate that more caution is required when aiming at reproducible non-covalent interactions between extended molecules.
Quantum-mechanical methods of benchmark quality are widely used for describing molecular interactions. The present work shows that interaction energies by CCSD(T) and DMC are not in consistent agreement for a set of polarizable supramolecules calling for cooperative efforts solving this conundrum. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-021-24119-3 |