Chemical copying of connectivity: DNA nanotechnology
Three-dimensional DNA nanoscaffolds such as supramolecular tetrahedra can self-assemble from tris-oligonucleotidyls — synthetic three-armed building blocks in which three identical or non-identical short DNA sequences are connected by a tris-linking backbone 1 , 2 . Here we show that the connectivit...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2002-11, Vol.420 (6913), p.286-286 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Three-dimensional DNA nanoscaffolds such as supramolecular tetrahedra can self-assemble from tris-oligonucleotidyls — synthetic three-armed building blocks in which three identical or non-identical short DNA sequences are connected by a tris-linking backbone
1
,
2
. Here we show that the connectivity information contained in these building blocks can be copied by using template-directed tris-linking. This finding is a crucial step towards the replication of nanoarchitectures that are based on tris-oligonucleotidyls and to the realization of artificially self-replicating systems on a nanometre scale. |
---|---|
ISSN: | 0028-0836 1476-4687 |
DOI: | 10.1038/420286a |