On the c0-equivalence and permutations of series

Assume that a convergent series of real numbers ∑ n = 1 ∞ a n has the property that there exists a set A ⊆ N such that the series ∑ n ∈ A a n is conditionally convergent. We prove that for a given arbitrary sequence ( b n ) of real numbers there exists a permutation σ : N → N such that σ ( n ) = n f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of functional analysis 2021, Vol.12 (2)
Hauptverfasser: Bartoszewicz, Artur, Fechner, Włodzimierz, Świątczak, Aleksandra, Widz, Agnieszka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Assume that a convergent series of real numbers ∑ n = 1 ∞ a n has the property that there exists a set A ⊆ N such that the series ∑ n ∈ A a n is conditionally convergent. We prove that for a given arbitrary sequence ( b n ) of real numbers there exists a permutation σ : N → N such that σ ( n ) = n for every n ∉ A and ( b n ) is c 0 -equivalent to a subsequence of the sequence of partial sums of the series ∑ n = 1 ∞ a σ ( n ) . Moreover, we discuss a connection between our main result with the classical Riemann series theorem.
ISSN:2639-7390
2008-8752
DOI:10.1007/s43034-020-00109-2