On Distance and Strong Metric Dimension of the Modular Product: On Distance and Strong Metric

The modular product G ⋄ H of graphs G and H is a graph on vertex set V ( G ) × V ( H ) . Two vertices ( g ,  h ) and ( g ′ , h ′ ) of G ⋄ H are adjacent if g = g ′ and h h ′ ∈ E ( H ) , or g g ′ ∈ E ( G ) and h = h ′ , or g g ′ ∈ E ( G ) and h h ′ ∈ E ( H ) , or (for g ≠ g ′ and h ≠ h ′ ) g g ′ ∉ E...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Malaysian Mathematical Sciences Society 2025, Vol.48 (1)
Hauptverfasser: Kang, Cong X., Kelenc, Aleksander, Peterin, Iztok, Yi, Eunjeong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The modular product G ⋄ H of graphs G and H is a graph on vertex set V ( G ) × V ( H ) . Two vertices ( g ,  h ) and ( g ′ , h ′ ) of G ⋄ H are adjacent if g = g ′ and h h ′ ∈ E ( H ) , or g g ′ ∈ E ( G ) and h = h ′ , or g g ′ ∈ E ( G ) and h h ′ ∈ E ( H ) , or (for g ≠ g ′ and h ≠ h ′ ) g g ′ ∉ E ( G ) and h h ′ ∉ E ( H ) . We derive the distance formula for the modular product and then describe all edges of the strong resolving graph of G ⋄ H . This is then used to obtain the strong metric dimension of the modular product on several, infinite families of graphs.
ISSN:0126-6705
2180-4206
DOI:10.1007/s40840-024-01800-6