On Distance and Strong Metric Dimension of the Modular Product: On Distance and Strong Metric
The modular product G ⋄ H of graphs G and H is a graph on vertex set V ( G ) × V ( H ) . Two vertices ( g , h ) and ( g ′ , h ′ ) of G ⋄ H are adjacent if g = g ′ and h h ′ ∈ E ( H ) , or g g ′ ∈ E ( G ) and h = h ′ , or g g ′ ∈ E ( G ) and h h ′ ∈ E ( H ) , or (for g ≠ g ′ and h ≠ h ′ ) g g ′ ∉ E...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Malaysian Mathematical Sciences Society 2025, Vol.48 (1) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The
modular product
G
⋄
H
of graphs
G
and
H
is a graph on vertex set
V
(
G
)
×
V
(
H
)
. Two vertices (
g
,
h
) and
(
g
′
,
h
′
)
of
G
⋄
H
are adjacent if
g
=
g
′
and
h
h
′
∈
E
(
H
)
, or
g
g
′
∈
E
(
G
)
and
h
=
h
′
, or
g
g
′
∈
E
(
G
)
and
h
h
′
∈
E
(
H
)
, or (for
g
≠
g
′
and
h
≠
h
′
)
g
g
′
∉
E
(
G
)
and
h
h
′
∉
E
(
H
)
. We derive the distance formula for the modular product and then describe all edges of the strong resolving graph of
G
⋄
H
. This is then used to obtain the strong metric dimension of the modular product on several, infinite families of graphs. |
---|---|
ISSN: | 0126-6705 2180-4206 |
DOI: | 10.1007/s40840-024-01800-6 |