Engineering Two-Phase Bifunctional Oxygen Electrocatalysts with Tunable and Synergetic Components for Flexible Zn–Air Batteries
Highlights A novel heterostructured bimetallic Co/CoFe nanomaterial supported on nanoflower-like N-doped graphitic carbon (NC) is prepared through a strategy of coordination construction-cation exchange-pyrolysis. The Co/CoFe@NC exhibits high bifunctional activities with a remarkably small potential...
Gespeichert in:
Veröffentlicht in: | Nano-Micro Letters 2021-12, Vol.13 (1), p.126-126, Article 126 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Highlights
A novel heterostructured bimetallic Co/CoFe nanomaterial supported on nanoflower-like N-doped graphitic carbon (NC) is prepared through a strategy of coordination construction-cation exchange-pyrolysis.
The Co/CoFe@NC exhibits high bifunctional activities with a remarkably small potential gap of 0.70 V between oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), which can be used in liquid and flexible quasi-solid-state rechargeable Zn–air batteries.
The density functional theory calculations reveal optimized adsorption energies for intermediates of ORR and OER on heterostructured Co/CoFe@NC.
Metal–air batteries, like Zn–air batteries (ZABs) are usually suffered from low energy conversion efficiency and poor cyclability caused by the sluggish OER and ORR at the air cathode. Herein, a novel bimetallic Co/CoFe nanomaterial supported on nanoflower-like N-doped graphitic carbon (NC) was prepared through a strategy of coordination construction–cation exchange-pyrolysis and used as a highly efficient bifunctional oxygen electrocatalyst. Experimental characterizations and density functional theory calculations reveal the formation of Co/CoFe heterostructure and synergistic effect between metal layer and NC support, leading to improved electric conductivity, accelerated reaction kinetics, and optimized adsorption energy for intermediates of ORR and OER. The Co/CoFe@NC exhibits high bifunctional activities with a remarkably small potential gap of 0.70 V between the half-wave potential (
E
1/2
) of ORR and the potential at 10 mA cm
‒2
(
E
j
=10
) of OER. The aqueous ZAB constructed using this air electrode exhibits a slight voltage loss of only 60 mV after 550-cycle test (360 h, 15 days). A sodium polyacrylate (PANa)-based hydrogel electrolyte was synthesized with strong water-retention capability and high ionic conductivity. The quasi-solid-state ZAB by integrating the Co/CoFe@NC air electrode and PANa hydrogel electrolyte demonstrates excellent mechanical stability and cyclability under different bending states. |
---|---|
ISSN: | 2311-6706 2150-5551 |
DOI: | 10.1007/s40820-021-00650-2 |