N-Tupling Transformations and Invariant Definite Integrals

Functions on the real number line of the type ψ ( x ) = c + x - b x - μ , with b > 0 , have the interesting property that for any continuous, absolutely integrable function F on R , the graph of F ( ψ ( x ) ) is a “doubling” of the graph of F ( x ) , while the integral over R remains invariant, ∫...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of applied and computational mathematics 2015-12, Vol.1 (4), p.527-541
Hauptverfasser: Cochrane, Todd, Goldstein, Lee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Functions on the real number line of the type ψ ( x ) = c + x - b x - μ , with b > 0 , have the interesting property that for any continuous, absolutely integrable function F on R , the graph of F ( ψ ( x ) ) is a “doubling” of the graph of F ( x ) , while the integral over R remains invariant, ∫ - ∞ ∞ F ( ψ ( x ) ) d x = ∫ - ∞ ∞ F ( x ) d x . In this paper, we discover new families of n -to-1 mappings on R that have the same invariance property.
ISSN:2349-5103
2199-5796
DOI:10.1007/s40819-015-0025-y