Solutions of Polynomial Equations in Subgroups of Fp
We present an upper bound on the number of solutions of an algebraic equation P ( x , y ) = 0 where x and y belong to the union of cosets of some subgroup of the multiplicative group κ ∗ of some field of positive characteristic. This bound generalizes the bound of Corvaja and Zannier (J Eur Math Soc...
Gespeichert in:
Veröffentlicht in: | Arnold mathematical journal 2019-03, Vol.5 (1), p.105-121 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present an upper bound on the number of solutions of an algebraic equation
P
(
x
,
y
)
=
0
where
x
and
y
belong to the union of cosets of some subgroup of the multiplicative group
κ
∗
of some field of positive characteristic. This bound generalizes the bound of Corvaja and Zannier (J Eur Math Soc 15(5):1927–1942,
2013
) to the case of union of cosets. We also obtain the upper bounds on the generalization of additive energy. |
---|---|
ISSN: | 2199-6792 2199-6806 |
DOI: | 10.1007/s40598-019-00112-z |