Solutions of Polynomial Equations in Subgroups of Fp

We present an upper bound on the number of solutions of an algebraic equation P ( x , y ) = 0 where x and y belong to the union of cosets of some subgroup of the multiplicative group κ ∗ of some field of positive characteristic. This bound generalizes the bound of Corvaja and Zannier (J Eur Math Soc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arnold mathematical journal 2019-03, Vol.5 (1), p.105-121
Hauptverfasser: Makarychev, Sergei, Vyugin, Ilya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present an upper bound on the number of solutions of an algebraic equation P ( x , y ) = 0 where x and y belong to the union of cosets of some subgroup of the multiplicative group κ ∗ of some field of positive characteristic. This bound generalizes the bound of Corvaja and Zannier (J Eur Math Soc 15(5):1927–1942, 2013 ) to the case of union of cosets. We also obtain the upper bounds on the generalization of additive energy.
ISSN:2199-6792
2199-6806
DOI:10.1007/s40598-019-00112-z