Milnor K2 and p-adic zeta functions for real quadratic fields

G. Stevens ( http://math.bu.edu/people/ghs/research.html ) constructed a modular symbol taking values in circular K -groups, which is intimately related to Eisenstein series. We make precise a relationship between his Milnor K -theoretic modular symbol Φ M K and the period integrals of Eisenstein se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales mathématiques du Québec 2017-04, Vol.41 (1), p.3-25
1. Verfasser: Park, Jeehoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:G. Stevens ( http://math.bu.edu/people/ghs/research.html ) constructed a modular symbol taking values in circular K -groups, which is intimately related to Eisenstein series. We make precise a relationship between his Milnor K -theoretic modular symbol Φ M K and the period integrals of Eisenstein series. The main goal here is to extract from Φ M K a group 1-cocyle on SL 2 ( Q ) with values in differential form valued distributions and use this to construct a p -adic locally analytic distribution which gives a p -adic partial zeta function of a real quadratic field.
ISSN:2195-4755
2195-4763
DOI:10.1007/s40316-017-0079-9