Milnor K2 and p-adic zeta functions for real quadratic fields
G. Stevens ( http://math.bu.edu/people/ghs/research.html ) constructed a modular symbol taking values in circular K -groups, which is intimately related to Eisenstein series. We make precise a relationship between his Milnor K -theoretic modular symbol Φ M K and the period integrals of Eisenstein se...
Gespeichert in:
Veröffentlicht in: | Annales mathématiques du Québec 2017-04, Vol.41 (1), p.3-25 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | G. Stevens (
http://math.bu.edu/people/ghs/research.html
) constructed a modular symbol taking values in circular
K
-groups, which is intimately related to Eisenstein series. We make precise a relationship between his Milnor
K
-theoretic modular symbol
Φ
M
K
and the period integrals of Eisenstein series. The main goal here is to extract from
Φ
M
K
a group 1-cocyle on
SL
2
(
Q
)
with values in differential form valued distributions and use this to construct a
p
-adic locally analytic distribution which gives a
p
-adic partial zeta function of a real quadratic field. |
---|---|
ISSN: | 2195-4755 2195-4763 |
DOI: | 10.1007/s40316-017-0079-9 |